A PAPER-BASED DUAL APTAMER ASSAY ON AN INTEGRATED MICROFLUIDIC SYSTEM FOR DETECTION OF HNP 1 AS A BIOMARKER FOR PERIPROSTHETIC JOINT INFECTIONS

Rishabh Gandotra¹, Feng-Chih Kuo², Mel S. Lee³ and Gwo-Bin Lee^{1,4}

¹Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan ²Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ³Department of Orthopaedic Surgery, Paochien Hospital, Pingtung, Taiwan

⁴Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan

This work demonstrated a novel dual-aptamer assay performed on a paper-based device composed of nitrocellulose (NC) membrane on an integrated microfluidic platform for detection of a biomarker, human neutrophil peptide 1 (HNP 1) for periprosthetic joint infection (PJI). A fully automated device involved a single loading process for the newly developed sandwich assay for HNP 1 quantification. The primary aptamer was immobilized on the NC membrane where HNP 1 was captured and detected using fluorescent-labelled secondary aptamer. The

developed assay is faster (~ 30 min) and requires less volume.

Introduction

Figure 1: Schematic of the paper-based, dual-aptamer assay. The process involved the crosslinking of a primary aptamer onto a NC membrane via UV crosslinking, followed by HNP 1 capture, secondary aptamer binding and finally fluorescent signals detection.

Results

Figure 4: Images observed under a fluorescence microscope for 5 different conditions of HNP 1. (a) Negative control (0 mg/L), (b) HNP 1 (1 mg/L), (c) HNP 1 (2 mg/L) (d) HNP 1 (5 mg/L), (e) HNP 1 (10 mg/L) and (f) HNP 1 (25 mg/L)

Table 1: Clinical sample analysis

NTHU

Chip design & optimization

Figure 2: (a) Schematic of exploded view of the microfluidic chip. (b) Pumping rate of micropump at variable gauge pressure (N=3).

A new paper-based, dual-aptamer assay on a microfluidic platform was successfully developed. The aptamer-based sandwich assay increased affinity and specificity for targeting PJI biomarker, HNP 1, without

Figure 3: (a) Detailed design and functions of micro-components of the chip and the two identical patterns (I and II). (b) Photograph of the microfabricated chip, which was composed of 12 electromagnetic valves (EMV) ports, 1 micropump, 8 reagent chambers, 4 NC membrane chambers and 1 waste outlet.

antibody reliability. A fluorescent image-based quantification was used to develop a calibration curve that could be used to analyze the clinical samples. The developed assay is cost-effective and can be performed within 30 min where four samples were analyzed simultaneously on a single chip. The developed microfluidic device can be used for further prognosis and diagnosis of PJI.

Acknowledgements

The authors would like to thank 1) Ministry of Science and Technology (MOST) of Taiwan (MOST 109-2221-E-007-006-MY3 & MOST 110-2221-E-007-010-MY3), 2) National Health Research Institutes of Taiwan (NHRI-EX110-11020EI), and 3) Chang Gung Memorial Hospital, Kaohsiung (CMRPG8K0501) for funding this work **Immediate Contact:** Rishabh Gandotra Ph.D. candidate, iNEMS, NTHU <u>rishabhgandotra.mbl@gmail.com</u>

*Chair Prof. Gwo-Bin Lee; gwobin@pme.nthu.edu.tw