A New Fabrication Process of Ultrathick Microfluidic Microstructures Utilizing SU-8 Photoresist

Che-Hsin Lin¹, Gwo-Bin Lee², Bao-Wen Chang², Guan-Liang Chang¹

> ¹Institute of Biomedical Engineering ²Department of Engineering Science National Cheng Kung University

Journal of Micromechanic and Microengineering, Vol. 12, No 5, pp. 590-597, 2002.

Fabrication Techniques

Constant volume injection

- □ No edge-bead effect
- Good uniformity
- Good flatness
- Less photoresist wastage
- Higher SB and lower PEB temperature
 - □ Shorter processing time
 - Better structure definition
- A new mask design concept
 - □ Smaller exposed area
 - Discrete exposed area
- UV glue and SU-8 Bonding technique

MML NCKU

Fabrication processes

Constant volume injection of SU-8

Softbake at 120 °C and exposure

Post exposure bake at 65 °C

PGMEA developing

2nd flood exposure

Structure release and hardbake

UV glue bonding

NCKU brication Lab

Ultrathick SU-8 structures

- Structure thickness: 1.5 mm
- Nearly vertical sidewall
- Good shape definition
- **Δ** Minimum feature width: 100 μm
- Aspect ratio > 15

MML NCKU

Thickness profile at the edge and photoresist uniformity

No edge bead

Reaching setting thickness within 3 mm

Substrate size: 10 x 10 cm²
Variation: ~ 3.1%

MML NCKU

UV glue bonding Technique

- Driven by capillary force
- Stopped by surface tension of UV glue
- Observation is not required
- High bonding strength can be obtained MML

MEMS design and Micro-fabrication Lab

NCKU

SU-8 micronozzles

Structure height: ~ 1 mm Width of nozzle: 250 μ m

Size: 1 cm X 1 cm Gas inlet via hole: 700 μm MML NCKU

A new pattern design concept

Micro channel: height 1 mm, width: 100 μ m

New design concept Conventional design

- Reduce exposed area.
- Separate exposed region.

Conventional design New design concept

- Channel collapsed with conventional design.
- Well-defined channel obtained with new design concept.

MML NCKU

Summaries

- A fast, low cost process was developed for fabrication of microfluidic devices.
- SU-8 PR layer thicker than1.5 mm could be formed by single coating.
- An easy, high strength bonding technique was used for sealing microchannels.
- A modified baking process was developed to get a better shape definition.
- A new mask design concept was proposed for fabrication of ultra-deep trenches.

MML NCKU