A Micromachine-based On-Chip Temperature Control System for Biomedical Applications

Chia-Yen Lee, Gwo-Bin Lee, Heng-Hui Liu, Fu-Chun Huang

MEMS Design and Microfabrication Lab Department of Engineering Science National Cheng Kung University Tainan, 701 Taiwan gwobin@mail.ncku.edu.tw

http://mml.es.ncku.edu.tw/

Outline

Introduction and Motivation
Design
Fabrication
Results and Discussion
Conclusions

Introduction

- Applications in micro PCR chips, micro incubators, micro fermentors and other micro bioreactors which need precise temperature control.
- Advantages of Micromachine-based Temperature Control System

	Conventional Instruments	Micro Temperature System
Temperature Rising Rate	1 °C/sec	> 10 °C/sec
Sample volume	>25 µL	\leq 5 μ L
Power	High	Low
Integration	Separated Devices	Integrated
Others	Stationary	Portable
	1	

PCR (Polymerase Chain reaction) – Kary Mullis, 1984

Denaturation- 95°C

Annealing- 60°C

Chain Extension- 72 °C

Repeat

Motivation

- **Typical PCR Cyclers**
- -take more than 2 hours
- -Require more than 25 μL DNA samples
- -Large-scale, bulky systems

Micro PCR systems

- •Heaters and sensors located inside PCR chamber
- => precise temperature control
- •Simpler fabrication process
- •Glass substrates => biocompatible

Heaters and sensors located inside the chamber
=> small thermal inertia, higher rising and cooling rates

Heater Design

•Percentage within 1.5 ° of the set-up temperature was used to evaluate the performance of the heaters (<u>Area Percentage of</u> $0 \le \Delta T \le 1.5^{\circ}C$)

•Better uniformity achieved for optimum layout of heaters.

Layout of Heaters and Sensors

- Heaters and sensors using the same material (Pt)
- Simpler process
- Sensing temperature inside the chamber

MML NCKU

Fabrication – glass substrates

- •Heaters and sensors fabricated on glass substrates
- •Au as metallization lead
- •Polyimide as isolation layer
- •PDMS upper plate

(a) Electron-beam evaporation/patterning of Pt/Cr

(b) Electron-beam evaporation/patterning of Au/Cr

(c) Spin-coating/patterning of polyimide

(d) Bonding of a PDMS upper plate with a chamber (A-A section) MML NCKU

Fabrication – PDMS Upper Plates

(a) Glass template formed by wet chemical etching

(b) Inverse structures formed by PDMS casting process

(c) Peeling of PDMS upper plate

PCR chips

Oxygen plasma used for glass/PDMS bonding

Bonding Pad

MML NCKU

Sensor Testing

Effect on Sintering on TCR

Testing Results of the Sensor

Heater Testing

Temperature rise rate : 20 °C/sec @ P=2.8 W MML NCKU

Temperature Distribution around Micro Heaters

arrayed temperature sensors

IR thermal imager

Temperature distribution around a micro heater with a set-up temperature of 95 °C MML NCKU

Control System

Biomedical Application (1) Enzyme reactor

Variation : ±0.1 °C

Enzyme Digestion Temperature = 38°C

MML NCKU

Biomedical Application (2) PCR Thermal Cycling

Time (sec)

•Temperature Rise Rate : 20 °C/sec

•Temperature Drop Rate : 10 °C/sec

•Mean Power Consumption : 1.24 W

•32 cycles in 15 minutes

Slab Gel Electrophoresis Results

248 bps

MML

MEMS design and Micro-fabrication Lab

NCKU

•HTR6 receptor gene (248 bps)

- •Volume of DNA samples = 900 nL
- •15 min, 32 cycles

Conclusions

- A simpler fabrication process for micro temperature control system has been developed.
- -Micro temperature sensors and heaters were fabricated on glass substrates, which are more bio-compatible.
- -Fewer consumption of both samples and reagents
- -Shorter cycle time higher temperature rise and drop rates due to low thermal inertia.
- -Less power consumption
- -Accurate temperature control
- Development of the micro temperature control system is crucial for μ -TAS

MML NCKU

Acknowledgements

 The authors would like to thank National Science Council in Taiwan for financial supports (NSC 90-2323-b006-011)

