A Micromachined DNA Manipulation Platform for the Stretching and Rotation of a Single DNA Molecule

Chi-Han Chiou, Gwo-Bin Lee

Department of Engineering Science National Cheng Kung University Tainan, Taiwan, R.O.C.

> gwobin@mail.ncku.edu.tw http://mml.es.ncku.edu.tw

> > MML NCKU

Motivation and Objectives

† Develop a DNA manipulation platform

→ Provide a tool to study biophysical properties of a single DNA molecule

★ Manipulate a single DNA molecule

 \rightarrow Stretch and rotate a single DNA molecule

Manipulate a magnetic bead tethering a single DNA molecule

MML NCKU

Nanotechnology – Synergy of Top-down Fabrication with Bottom-up Processes

★ Top-down approach

- Micro-photolithography technique
 - \rightarrow Fabricate a micro-scale device
 - → Manipulate a single DNA molecule (2-nm diameter)

★ Bottom-up approach

- Chemical self-assembly technique
 - \rightarrow Human-made synthesis
 - \rightarrow Biological objects (DNA and protein)
- DNA manipulation platform

Advantages of Micromachined Magnetic Manipulator

★ Noninvasive

- \rightarrow No photo-damages compared with optical tweezers
- ★ Proper force range between 10⁻¹⁴ ~10⁻¹¹ N
 - → Required DNA stretching forces

★ Excellent controllability during operation

 \rightarrow Stretching and rotation through a simple current control

★ Compatible with MEMS technologies

 \rightarrow Easy assembly

Schematic Illustration of the Magnetic Manipulator

Key components of the magnetic manipulator :

- (1) Six microcoils \rightarrow generate required magnetic fields
- (2) Gold-patterned surface \rightarrow immobilize a single DNA
- (3) Fluidic channel \rightarrow observe a dynamic behavior of a single DNA

Fabrication Process for the Magnetic Manipulator

PR molding for conductor pattern

n PI coating and bonding pads opening

Copper coil electroplating

Localized gold lift-off

PI patterning and via electroplating

Upper copper coil electroplating

Double-side sticky tape Fluidic channel Coverslip

Flow cell assembly

MML NCKU

Measurement of Magnetic Fields

Step3 : Klenow fragment $(3' \rightarrow 5' \text{ exo})$

Step4 : Phenol/chloroform extraction and ethanol precipitation

MML NCKU

Principles of DNA Movement

Applying currents through coils $1, 2, 3 \rightarrow \text{move to } 0^{\circ}$ Applying currents through coils $3, 4, 5 \rightarrow \text{move to } 120^{\circ}$ Applying currents through coils $5, 6, 1 \rightarrow \text{move to } 240^{\circ}$

MML NCKU

1 cm

Stretching of a Single DNA Molecule (a) Utilizing shear flow (up to 1 mm/s) The bonding is strong enough to resist shear force

(b) Utilizing magnetic manipulator (up to 250 mA) $5 \mu m$

Rotation of a Single DNA Molecule

Free-body Diagram of the Tethered-bead DNA

Conclusions

- Development of a magnetic manipulator using MEMS technologies
- **4** Demonstration of a novel DNA construction method
- Successful demonstration of stretching and rotation of a single DNA molecule
- Reasonable agreement between experimental results and theoretical data
- Advantages including

Noninvasive, proper force range, excellent operation control, low cost, MEMS compatibility

Providing a powerful tool for nano-biotechnology

MML NCKU